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The hydrological cycle is changing

[0 Examples of such changes are well documented:
B Changes in snowfall & snow pack
0 e.g., Mote 2003; Mote et al. 2005; Knowles et al. 2006

B Changes in streamflow
[0 e.g., Cayan et al. 2001 ; Stewart et al. 2005; Maurer et al. 2007

B Warmer air temperatures (esp. spring Tmin)
O e.g., Dettinger et al. 1995; Easterling 2002

[0 May affect our water supply in coming decades
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Can we say with confidence that these changes are due
to human effects?




Detection and Attribution (D&A)

[l Detection: are the changes inconsistent with natural
variability?

[ Attribution: are the changes consistent with
anthropogenic forcing?

[0 Generate a “fingerprint” that encapsulates changes
expected (from model runs)

[0 Assess trend in fingerprint in obs and models




Time series of key variables (obs.)
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All variables have been
normalized (fractionalized) by
dividing by the CCSM3-FV
control run mean over first
300 yrs.

Necessary for the
multivariate detection and
attribution (D&A), so have
same variance in each
variable (the “units problem”).




Novel aspects

[0 Multivariate Detection and Attribution (D&A)

B Not just temperature or streamflow alone

[0 Regional
B Have to address problems of large amplitude natural variability

B Global results downscaled to 1/8° to capture topographic effects

[0 Related to the hydrological cycle
B Rare in formal D&A work

B Immediate application to problems of practical importance




Overall scheme

1. Start with global GCMs: control and anthropogenically
forced runs

2. Downscale and apply to region of interest

D&A on 3 variables:
B SWE/P (1 April Snow Water Equv. / Oct-Mar precip)

B Temperature (examined JFM frost days daily minimum temperature)

B River flow (examined JFM fraction and CT, center of timing)
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Models and data

[0 Control model GCM runs (1500 yrs)

B 850 yrs CCSM3-FV (1.25%x1°; finer resolution than T85)
B 750 yrs PCM (T42)

[0 Anthropogenically forced GCM runs, 1900-1999 (1400 yrs)
B PCM (4 members)
® MIROC (10 members)

[0 Regional statistical downscaling of GCM forcing
B 2 methods, 12 km resolution

[J VIC hydrological model (1/8 deg resolution)

[0 Observations, 1950-1999
B Snow courses for SWE
B UW, Maurer, PRISM for T and P

B Naturalized flow from Colorado R. (Lee’s Ferry), Columbia R. (Dalles),
Sacramento and San Joaquin river




Multivariate fingerprint
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Ensemble signhal strength & significance
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Conclusion:

Hydrology of the
western U.S. shows a
clear signature of
human-induced
climate change




Changes with elevation
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Time to

detection
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s understand today. What about tomorrow?




Looking Ahead

[0 Overall goal: High resolution, probabilistic projections of
climate change impacts over California

[0 Downscaling

B Statistical Techniques

[0 Hidalgo and Dettinger — downscaling
that preserves diurnal changes

O Collaboration with Ed Maurer to
compare to other statistical techniques

B Collaborations with colleagues using
WRF and RegCM

O Participated in Regional climate model
Enhancement and Baseline climate
Intercomparison (REBI) project (N.
Miller et al.)

[0 Compare high-resolution simulations to
observations and each other




Looking Ahead

Ll

Regional Spectral atmospheric
Model (RSM)

Building on success of Kanamitsu and
Kanamaru (2007), 57-year dynamical
downscaling of NCEP/NCAR reanalysis at
10 km resolution (CaRD10)

Extending to future climate scenarios;
goal is multiple ensemble members at 10
km resolution

Coupled regional model (Seo, A.

Miller)

B Influence of ocean upwelling on coastal
temperatures

B Regions of persistent marine stratus —
significant global errors, affects us too

B Influence of local vegetation changes on

regional climate
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Looking Ahead

[0 Selecting global models for Skill Score
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Conclusions

[J Much previous work noting changes in snow cover,
temperature, and river flow over the western U.S., but no
formal D&A, nor multivariate, nor on such a fine scale

[0 Formal D&A analysis shows changes in western hydrology
over 1950-99 are largely human-induced (est., 60%; ENSO
and the PDO are also important in our region).

[0 Detailed agreement between model and obs. over past
conditions gives confidence for regional climate projections
and their impact on California.
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